Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cancer Research on Prevention and Treatment ; (12): 258-263, 2023.
Article in Chinese | WPRIM | ID: wpr-986710

ABSTRACT

Objective To investigate the selection of treatment strategies and prognostic factors for patients with stage T3 and T4 laryngeal carcinoma. Methods A total of 132 patients with stage T3 and T4 laryngeal cancer admitted to our hospital from March 2010 to March 2019 were retrospectively selected as research objects. According to the different treatment strategies, the patients were divided into simple surgery group (group A, 57 cases), simple chemoradiotherapy group (group B, 32 cases), and surgery combined with chemoradiotherapy group (group C, 43 cases). The general data and clinicopathological features of the three groups were compared, and a survival curve was drawn by the Kaplan–Meier method. The 3-year survival rates of the three groups were compared. Then, the same 132 patients were divided into survival and death groups. The clinical data of the two groups were compared, and the prognostic factors were analyzed by multivariate logistic regression. A back propagation (BP) neural network model was constructed, and its differentiation and accuracy were evaluated. Results The proportions and 3 year survival rates of patients with poor differentiation, lymphatic vascular invasion, and involvement of lymph nodes outside the capsule in group C were significantly higher than those in groups A and B (P < 0.05). The 3 year survival rate of 132 patients was 68.94%(41/132). Poor differentiation, N2-N3 stage, lymphatic vascular invasion, and involvement of lymph nodes outside the capsule were risk factors for death (P < 0.05), whereas surgery combined with radiotherapy and chemotherapy were protective factors (P < 0.05). The BP neural network model exhibited good discrimination and high accuracy. Conclusion Surgery combined with radiotherapy and chemotherapy can significantly improve survival rate in patients with poor differentiation, lymphatic vascular invasion, and involvement of lymph nodes outside the capsule. Close attention should be paid to patients with stage N2-N3 in the formulation of reasonable treatment strategies.

2.
Chinese Journal of Lung Cancer ; (12): 348-358, 2023.
Article in Chinese | WPRIM | ID: wpr-982166

ABSTRACT

BACKGROUND@#Lung cancer is one of the most common malignant tumors in the world. The accuracy of intraoperative frozen section (FS) in the diagnosis of lung adenocarcinoma infiltration cannot fully meet the clinical needs. The aim of this study is to explore the possibility of improving the diagnostic efficiency of FS in lung adenocarcinoma by using the original multi-spectral intelligent analyzer.@*METHODS@#Patients with pulmonary nodules who underwent surgery in the Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University from January 2021 to December 2022 were included in the study. The multispectral information of pulmonary nodule tissues and surrounding normal tissues were collected. A neural network model was established and the accuracy of the neural network diagnostic model was verified clinically.@*RESULTS@#A total of 223 samples were collected in this study, 156 samples of primary lung adenocarcinoma were finally included, and a total of 1,560 sets of multispectral data were collected. The area under the curve (AUC) of spectral diagnosis in the test set (10% of the first 116 cases) of the neural network model was 0.955 (95%CI: 0.909-1.000, P<0.05), and the diagnostic accuracy was 95.69%. In the clinical validation group (the last 40 cases), the accuracy of spectral diagnosis and FS diagnosis were both 67.50% (27/40), and the AUC of the combination of the two was 0.949 (95%CI: 0.878-1.000, P<0.05), and the accuracy was 95.00% (38/40).@*CONCLUSIONS@#The accuracy of the original multi-spectral intelligent analyzer in the diagnosis of lung invasive adenocarcinoma and non-invasive adenocarcinoma is equivalent to that of FS. The application of the original multi-spectral intelligent analyzer in the diagnosis of FS can improve the diagnostic accuracy and reduce the complexity of intraoperative lung cancer surgery plan.
.


Subject(s)
Humans , Lung Neoplasms/surgery , Adenocarcinoma of Lung/surgery , Adenocarcinoma/surgery , Hospitals , Multiple Pulmonary Nodules
3.
Chinese Journal of Schistosomiasis Control ; (6): 225-235, 2023.
Article in Chinese | WPRIM | ID: wpr-978509

ABSTRACT

Objective To create risk predictive models of healthcare-seeking delay among imported malaria patients in Jiangsu Province based on machine learning algorithms, so as to provide insights into early identification of imported malaria cases in Jiangsu Province. Methods Case investigation, first symptoms and time of initial diagnosis of imported malaria patients in Jiangsu Province in 2019 were captured from Infectious Disease Report Information Management System and Parasitic Disease Prevention and Control Information Management System of Chinese Center for Disease Control and Prevention. The risk predictive models of healthcare-seeking delay among imported malaria patients were created with the back propagation (BP) neural network model, logistic regression model, random forest model and Bayesian model using thirteen factors as independent variables, including occupation, species of malaria parasite, main clinical manifestations, presence of complications, severity of disease, age, duration of residing abroad, frequency of malaria parasite infections abroad, incubation period, level of institution at initial diagnosis, country of origin, number of individuals travelling with patients and way to go abroad, and time of healthcare-seeking delay as a dependent variable. Logistic regression model was visualized using a nomogram, and the nomogram was evaluated using calibration curves. In addition, the efficiency of the four models for prediction of risk of healthcare-seeking delay among imported malaria patients was evaluated using the area under curve (AUC) of receiver operating characteristic curve (ROC). The importance of each characteristic was quantified and attributed by using SHAP to examine the positive and negative effects of the value of each characteristic on the predictive efficiency. Results A total of 244 imported malaria patients were enrolled, including 100 cases (40.98%) with the duration from onset of first symptoms to time of initial diagnosis that exceeded 24 hours. Logistic regression analysis identified a history of malaria parasite infection [odds ratio (OR) = 3.075, 95% confidential interval (CI): (1.597, 5.923)], long incubation period [OR = 1.010, 95% CI: (1.001, 1.018)] and seeking healthcare in provincial or municipal medical facilities [OR = 12.550, 95% CI: (1.158, 135.963)] as risk factors for delay in seeking healthcare among imported malaria cases. BP neural network modeling showed that duration of residing abroad, incubation period and age posed great impacts on delay in healthcare-seek among imported malaria patients. Random forest modeling showed that the top five factors with the greatest impact on healthcare-seeking delay included main clinical manifestations, the way to go abroad, incubation period, duration of residing abroad and age among imported malaria patients, and Bayesian modeling revealed that the top five factors affecting healthcare-seeking delay among imported malaria patients included level of institutions at initial diagnosis, age, country of origin, history of malaria parasite infection and individuals travelling with imported malaria patients. ROC curve analysis showed higher overall performance of the BP neural network model and the logistic regression model for prediction of the risk of healthcare-seeking delay among imported malaria patients (Z = 2.700 to 4.641, all P values < 0.01), with no statistically significant difference in the AUC among four models (Z = 1.209, P > 0.05). The sensitivity (71.00%) and Youden index (43.92%) of the logistic regression model was higher than those of the BP neural network (63.00% and 36.61%, respectively), and the specificity of the BP neural network model (73.61%) was higher than that of the logistic regression model (72.92%). Conclusions Imported malaria cases with long duration of residing abroad, a history of malaria parasite infection, long incubation period, advanced age and seeking healthcare in provincial or municipal medical institutions have a high likelihood of delay in healthcare-seeking in Jiangsu Province. The models created based on the logistic regression and BP neural network show a high efficiency for prediction of the risk of healthcare-seeking among imported malaria patients in Jiangsu Province, which may provide insights into health management of imported malaria patients.

4.
Journal of Public Health and Preventive Medicine ; (6): 87-90, 2023.
Article in Chinese | WPRIM | ID: wpr-996423

ABSTRACT

Objective To predict the effectiveness of nosocomial infection management and effectively control the risk of nosocomial infection. Methods In this study, with the population of ICU patients in a Grade A hospital , 345 ICU patients seen from June 2020 to June 2021 were included in the analysis to collect the infection data in the hospital. Based on the use of the decision tree model to analyze the influencing factors of nosocomial infection, the neural network model was also used to predict the risk of developing nosocomial infection. Results The decision tree model showed that advanced age (age> 80 years) influenced the root node. Type 2 diabetes, gender by male, and BMI level were child nodes, which had different synergistic effects on the occurrence of nosocomial infection. At the same time, random forest (RF), support vector machine (SVM), logical regression (LR) and K nearest neighbor (KNN) algorithms were used to construct a neural network prediction model of nosocomial infection risk, suggesting that the condition, sex and body size of basic diseases are related to the occurrence of nosocomial infection. The combined use of the above model in parallel can effectively increase the specificity and reduce the missed diagnosis. Conclusion The neural network model joint decision tree model in parallel and joint early warning of nosocomial infection risk have excellent effect, and can effectively provide information support for the prevention, management and disposal of nosocomial infection.

5.
Journal of Public Health and Preventive Medicine ; (6): 20-23, 2021.
Article in Chinese | WPRIM | ID: wpr-877080

ABSTRACT

Objective To analyze the composition and influencing factors of hospitalization expenses for diabetic patients,and to provide reference for effective control of medical expenses. Methods The hospitalization cost data of diabetes patients in rural areas of Wugang from 2013 to 2017 were collected. Structural change analysis,non-parametric test and BP (Back Propagation)neural network model were used to analyze the hospitalization expenses and influencing factors. Results The top three components of hospitalization expenses were drug cost (50.02%), examination cost (15.35%) and laboratory cost (12.06%). The contribution rates of structural change of hospitalization expenses were the examination fee (41.00%), drug fee (34.92%) and treatment fee (13.41%), respectively. Factors affecting the total hospitalization cost of diabetic patients included length of stay, operation or not, hospital level, age, discharge year, complication or not and gender (P<0.05), among which length of stay had the greatest impact (sensitivity value was 0.669). Conclusion The hospitalization expenses of patients with diabetes is affected by a variety of factors. It is suggested to optimize the composition of hospitalization expenses by improving the price mechanism of medical services, and to control and reasonably reduce hospitalization expenses by implementing standardized management of clinical pathways, implementing two-way referral and strengthening tertiary prevention.

6.
Journal of Veterinary Science ; : e44-2019.
Article in English | WPRIM | ID: wpr-758922

ABSTRACT

This study evaluated the feasibility of using texture analysis and machine learning to distinguish radiographic lung patterns. A total of 1200 regions of interest (ROIs) including four specific lung patterns (normal, alveolar, bronchial, and unstructured interstitial) were obtained from 512 thoracic radiographs of 252 dogs and 65 cats. Forty-four texture parameters based on eight methods of texture analysis (first-order statistics, spatial gray-level-dependence matrices, gray-level-difference statistics, gray-level run length image statistics, neighborhood gray-tone difference matrices, fractal dimension texture analysis, Fourier power spectrum, and Law's texture energy measures) were used to extract textural features from the ROIs. The texture parameters of each lung pattern were compared and used for training and testing of artificial neural networks. Classification performance was evaluated by calculating accuracy and the area under the receiver operating characteristic curve (AUC). Forty texture parameters showed significant differences between the lung patterns. The accuracy of lung pattern classification was 99.1% in the training dataset and 91.9% in the testing dataset. The AUCs were above 0.98 in the training set and above 0.92 in the testing dataset. Texture analysis and machine learning algorithms may potentially facilitate the evaluation of medical images.


Subject(s)
Animals , Cats , Dogs , Area Under Curve , Classification , Dataset , Fourier Analysis , Fractals , Lung , Machine Learning , Neural Networks, Computer , Pattern Recognition, Visual , Radiography, Thoracic , Residence Characteristics , ROC Curve
7.
Chinese Journal of Radiology ; (12): 668-672, 2018.
Article in Chinese | WPRIM | ID: wpr-707977

ABSTRACT

Objective To evaluate the diagnostic performance of digital breast tomosynthesis (DBT) breast X-ray photography image texture characteristics based deep learning classification model on differentiating malignant masses. Methods Retrospectively collected 132 cases with simplex breast lesions (89 benign lesions and 43 malignant lesions) which were confirmed by pathology and DBT during January 2016 to December 2016 in Nanfang Hospital. DBT was performed before biopsy and surgery. Image of cranio-caudal view (CC) and medio-lateral oblique (MLO) were captured. The lesion area was segmented to acquire ROI by ITK-SNAP software. Then the processed images were input into MATLAB R2015b to establish a feature model for extracting texture features. The characteristics with high correlation was analyzed from Fisher score and one sample t test. We built up support vector machine (SVM) classification model based on extracted texture and added neural network model (CNN) for deep learning classification model. We randomly assigned collected cases into training group and validation group. The diagnosis of benign and malignant lesions were served as the reference. The efficiency was evaluated by ROC classification model. Result We extracted 82 texture characteristics from 132 images of leisure (132 images of CC and 132 images of MLO) by establishing deep learning classification model of breast lesions. We randomly chose and combined characteristics from 15 texture characteristics with statistical significance, then differentiated benign and malignant by SVM classification model. After 50 iterations on each combination of characteristics, the average diagnostic efficacy was compared to obtained the one with higher efficacy. Nine of CC and 8 of MLO was selected. The result showed that the sensitivity, specificity, accuracy and area under curve (AUC) of the model to differentiate simplex breast lesions for CC were 0.68, 0.77, 0.74 and 0.74, for MLO were 0.71, 0.71, 0.71 and 0.76. Conclusions MLO has better diagnostic performance for the diagnosis than CC. The deep learning classification model on breast lesions which was built upon DBT image texture characteristics on MLO could differentiate malignant masses effectively.

8.
Academic Journal of Second Military Medical University ; (12): 115-119, 2016.
Article in Chinese | WPRIM | ID: wpr-838634

ABSTRACT

Objective To compare the performance of ARIMA model and GRNN model for predicting the incidence of tuberculosis. Methods ARIMA model was set up by Eviews 7.0.0.1 and GRNN model was set up by neural network toolbox of Matlab 7.1 based on the monthly tuberculosis incidence data from January 2004 to December 2012 in China. Monthly tuberculosis incidence data in 2013 were subjected to the two models for testing, and the results were compared between the two groups. Results The Theil unequal coefficients (TIC) were 0.034 and 0.059 for ARIMA model and GRNN model, respectively, indicating that ARIMA model was better than GRNN model to fit with the monthly incidence of tuberculosis in 2013. The absolute value of the relative error for ARIMA model was only 57.19% of GRNN model. Conclusion ARIMA prediction model is more suitable for predicting the incidence of tuberculosis in China, and it is suggested a combination of models should be used to predict the incidence of tuberculosis.

9.
Journal of Regional Anatomy and Operative Surgery ; (6): 627-629, 2015.
Article in Chinese | WPRIM | ID: wpr-499966

ABSTRACT

Objective The purpose of this study was to examine the relationship between acute mountain sickness ( AMS) and AMS susceptibility indices before ascent to high altitude and to evaluate their predictive value for AMS. Methods A total of 314 healthy male a-dults were voluntarily enrolled. Their 22 physiological and mental indices of AMS susceptibility were obtained before exposure high altitude. The diagnoses of AMS were based on the Lake Louise score ( LLS) ,an international standard scoring system for AMS. According to the char-acteristics of selected AMS susceptibility indices and the strong fault tolerance of neural network theory, the learning vector quantization ( LVQ) neural network method was adopted to build the prediction model of susceptibility to AMS. Results The results showed the sensitiv-ity of the LVQ model which distinguishes subjects with no-AMS reached 95. 00%,the average correct-prediction precision ultimately reached 72. 22%. The result of prediction is believable. Conclusion The builded LVQ model provide a scientific method for screening crowd who quickly ascend to high altitude,and also can lead to an effective preliminary screening of susceptibility to AMS.

10.
Chinese Traditional and Herbal Drugs ; (24): 2106-2110, 2014.
Article in Chinese | WPRIM | ID: wpr-854472

ABSTRACT

Based on the research results of the extraction, pharmacokinetics, and pharmacodynamics of Chinese materia medica (CMM), this paper thoroughly summarizes the principles and approaches of the corresponding mathematical models, and briefly makes a comparsion analysis on their strength and weakness. Referring to the associating data, the representatives were selected. Mathematical models with pros and cons can conduct the quantitatively analysis of study of CMM, and achieve the goals of precision, calculability, predicatability, and controllability. Mathematical models can effectively transform the qualitative problems in the study of CMM to the quantitative ones, unveil the objective laws between the quantities and promote the scientific development of CMM.

SELECTION OF CITATIONS
SEARCH DETAIL